
1

UNIT II

 Binary Codes – 8421, 2421, Excess-3, Reflected Code – Error Detection Codes – Alphanumeric Code

– Basic.

 Logic Gates.

CLASSIFICATION OF BINARY CODES

The following figure shows the classification of binary codes.

2

Different Types of Binary Codes | BCD (8421), 2421, Excess-3, Gray

BCD Code:

 BCD code is an abbreviation for Binary coded Decimal codes.

 It is a numeric weighted code, in which each digit of a decimal number is represented by a separate

group of 4-bits.

 There are several BCD codes like 8421, 2421, 3321, 4221, 5211, 5311, 5421, etc.

 The most common and widely used BCD code is 8421 code.

 In 8421 code, the weights associated with 4 bits are 8, 4, 2, 1 from MSB to LSB.

 That is, the weight associated with 3rd bit is 8, the weight associated with 2nd bit is 4, the weight

associated with 1st bit is 2 and the weight associated with 0th bit is 1.

The following table shows the 8421 code for 0-9 decimal numbers.

http://www.electrically4u.com/binary-codes/#Weighted_codes

3

EXCESS-3 CODE:

 Excess-3 code is derived by simply adding 3 to each BCD number.

 It is a non-weighted code

 It is a sequential code and reflective code.

http://www.electrically4u.com/binary-codes/#Nonweighted_codes
http://www.electrically4u.com/binary-codes/#Sequential_code
http://www.electrically4u.com/binary-codes/#Reflective_codes

4

THE GRAY CODE:

BINARY-TO-GRAY CODE CONVERSION

 The MSB in the Gray code is the same as corresponding MSB in the binary number.

 Going from left to right, add each adjacent pair of binary code bits to get the next Gray

code bit. Discard carries.

Ex: Convert (101011)2 to Gray code

GRAY-TO-BINARY CONVERSION

 The MSB in the binary code is the same as the corresponding bit in the Gray

code.

 Add each binary code bit generated to the Gray code bit in the next adjacent position.

 Discard carries.

Ex: Convert the Gray code word 11011 to binary

 1 1 0 1 1

 + + + +

 1 0 0 1 0

5

APPLICATION OF GRAY CODE:

The gray code is used in a few specific applications.

 The main applications include being used in analog to digital converters, as well as being used

for error correction in digital communication.

 Gray code is used to minimize errors in converting analog signals to digital signals.

ADVANTAGES OF GRAY CODE:

 Better for error minimization in converting analog signals to digital signals.

 Reduces the occurrence of “Hamming Walls” (an undesirable state) when used in genetic

algorithms.

 Can be used to in to minimize a logic circuit.

 Useful in clock domain crossing.

DISADVANTAGES OF GRAY CODE:

 Not suitable for arithmetic operations.

 Limited practical use outside of a few specific applications.

https://ieeexplore.ieee.org/document/282292
https://ieeexplore.ieee.org/document/282292

6

2421 CODE:

This code also a 4 bit application code where the binary weights carry 2, 4, 2, 1 from left to right.

DECIMAL

NUMBER
BINARY NUMBER

2421

CODE

0 0 0000

1 1 0001

2 10 0010

3 11 0011

4 100 0100

5 101 1011

6 110 1100

7 111 1101

8 1000 1110

9 1001 1111

7

ERROR DETECTION CODE:

 The error detection codes are the code used for detecting the error in the received data bit

stream.

 In these codes, some bits are included appended to the original bit stream.

 Error detecting codes encode the message before sending it over the noisy channels.

 The encoding scheme is performed in such a way that the decoder at the receiving can find the

errors easily in the receiving data with a higher chance of success.

Example − Parity code, Hamming code.

1. PARITY CODE:

 It is easy to include append one parity bit either to the left of MSB or to the right of LSB of

original bit stream.

 There are two types of parity codes, namely

 even parity code and

 odd parity code based on the type of parity being chosen.

 Even Parity Code

 The value of even parity bit should be zero, if even number of ones present in the

binary code. Otherwise, it should be one.

 So that, even number of ones present in even parity code.

 Even parity code contains the data bits and even parity bit.

 The following table shows the even parity codes corresponding to each 3-bit

binary code.

 Here, the even parity bit is included to the right of LSB of binary code.

8

Binary Code Even Parity bit Even Parity Code

000 0 0000

001 1 0011

010 1 0101

011 0 0110

100 1 1001

101 0 1010

110 0 1100

111 1 1111

Here, the number of bits present in the even parity codes is 4. So, the possible even number of ones in

these even parity codes are 0, 2 & 4.

 If the other system receives one of these even parity codes, then there is no error in the received

data. The bits other than even parity bit are same as that of binary code.

 If the other system receives other than even parity codes, then there will be an errors in the

received data. In this case, we can’t predict the original binary code because we don’t know the

bit positions of error.

Therefore, even parity bit is useful only for detection of error in the received parity code. But, it is not

sufficient to correct the error.

 Odd Parity Code

 The value of odd parity bit should be zero, if odd number of ones present in the binary code.

Otherwise, it should be one. So that, odd number of ones present in odd parity code. Odd parity

code contains the data bits and odd parity bit.

 The following table shows the odd parity codes corresponding to each 3-bit binary code. Here,

the odd parity bit is included to the right of LSB of binary code.

9

Binary Code Odd Parity bit Odd Parity Code

000 1 0001

001 0 0010

010 0 0100

011 1 0111

100 0 1000

101 1 1011

110 1 1101

111 0 1110

Here, the number of bits present in the odd parity codes is 4. So, the possible odd number of ones in

these odd parity codes is 1 & 3.

 If the other system receives one of these odd parity codes, then there is no error in the received

data. The bits other than odd parity bit are same as that of binary code.

 If the other system receives other than odd parity codes, then there is an errors in the received

data. In this case, we can’t predict the original binary code because we don’t know the bit

positions of error.

Therefore, odd parity bit is useful only for detection of error in the received parity code. But, it is not

sufficient to correct the error.

10

ASCII CODE

 The ASCII stands for American Standard Code for Information Interchange.

 The ASCII code is an alphanumeric code used for data communication in digital computers.

 The ASCII is a 7-bit code capable of representing 27 or 128 number of different characters.

 The ASCII code is made up of a three-bit group, which is followed by a four-bit code.

 The ASCII Code is a 7 or 8-bit alphanumeric code.

 This code can represent 127 unique characters.

 The ASCII code starts from 00h to 7Fh. In this, the code from 00h to 1Fh is used for control

characters, and the code from 20h to 7Fh is used for graphic symbols.

 The 8-bit code holds ASCII, which supports 256 symbols where math and graphic symbols are

added.

 The range of the extended ASCII is 80h to FFh.

The ASCII characters are classified into the following groups:

11

1. CONTROL CHARACTERS

 The non-printable characters used for sending commands to the PC or printer are known as

control characters.

 We can set tabs, and line breaks functionality by this code.

 The control characters are based on telex technology. Nowadays, it's not so much popular in use.

 The character from 0 to 31 and 127 comes under control characters.

2. SPECIAL CHARACTERS

 All printable characters that are neither numbers nor letters come under the special characters.

 These characters contain technical, punctuation, and mathematical characters with space also.

 The character from 32 to 47, 58 to 64, 91 to 96, and 123 to 126 comes under this category.

3. NUMBERS CHARACTERS

 This category of ASCII code contains Ten Arabic numerals from 0 to 9.

4. LETTERS CHARACTERS

 In this category, two groups of letters are contained, i.e., the group of uppercase letters and the

group of lowercase letters.

 The range from 65 to 90 and 97 to 122 comes under this category.

12

ASCII Table

The values are typically represented in ASCII code tables in Decimal, Binary, And Hexadecimal

Form.

Binary
Hexa

decimal
Decimal

ASCII

Symbol
Description Group

0000000 0 0 NUL
The null character encourage the device to

do nothing

Control

Character

0000001 1 1 SOH
The symbol SOH(Starts of heading)

Initiates the header.

Control

Character

0000010 2 2 STX

The symbol STX(Start of Text) ends the

header and marks the beginning of a

message.

Control

Character

0000011 3 3 ETX
The symbol ETX(End of Text) indicates the

end of the message.

Control

Character

0000100 4 4 EOT
The EOT(end of text) symbol marks the

end of a completes transmission

Control

Character

0000101 5 5 ENQ
The ENQ(Enquiry) symbol is a request that

requires a response

Control

Character

0000110 6 6 ACK
The ACK(Acknowledge) symbol is a

positive answer to the request.

Control

Character

0000111 7 7 BEL The BEL(Bell) symbol triggers a beep.
Control

Character

0001000 8 8 BS
Lets the cursor move back one step

(Backspace)

Control

Character

0001001 9 9
TAB

(HT)

A horizontal tab that moves the cursor

within a row to the next predefined position

(Horizontal Tab)

Control

Character

0001010 A 10 LF
Causes the cursor to jump to the next line

(Line Feed)

Control

Character

0001011 B 11 VT
The vertical tab lets the cursor jump to a

predefined line (Vertical Tab)

Control

Character

0001100 C 12 FF Requests a page break (Form Feed)
Control

Character

0001101 D 13 CR
Moves the cursor back to the first position

of the line (Carriage Return)

Control

Character

0001110 E 14 SO
Switches to a special presentation (Shift

Out)

Control

Character

0001111 F 15 SI
Switches the display back to the normal

state (Shift In)

Control

Character

0010000 10 16 DLE
Changes the meaning of the following

characters (Data Link Escape)

Control

Character

0010001
11 17 DC1

Control characters assigned depending

on the device used (Device Control)

Control

Character

0010010
12 18 DC2

Control characters assigned depending

on the device used (Device Control)

Control

Character

13

Binary
Hexa

decimal
Decimal

ASCII

Symbol
Description Group

0010011 13 19 DC3
Control characters assigned depending

on the device used (Device Control)

Control

Character

0010100 14 20 DC4
Control characters assigned depending

on the device used (Device Control)

Control

Character

0010101 15 21 NAK
The negative response to a request

(Negative Acknowledge)

Control

Character

0010110 16 22 SYN

Synchronizes a data transfer, even if no

signals are transmitted (Synchronous

Idle)

Control

Character

0010111 17 23 ETB
Marks the end of a transmission block

(End of Transmission Block)

Control

Character

0011000 18 24 CAN

Makes it clear that transmission was

faulty and the data must be discarded

(Cancel)

Control

Character

0011001 19 25 EM
Indicates the end of the storage medium

(End of Medium)

Control

Character

0011010 1A 26 SUB
Replacement for a faulty sign

(Substitute)

Control

Character

0011011 1B 27 ESC

Initiates an escape sequence and thus

gives the following characters a special

meaning (Escape)

Control

Character

0011100 1C 28 FS File separator.
Control

Character

0011101 1D 29 GS Group separator.
Control

Character

0011110 1E 30 RS Record separator.
Control

Character

0011111 1F 31 US Unit separator.
Control

Character

0100000 20 32 SP Blank space
Special

Character

0100001 21 33 ! Exclamation mark
Special

Character

0100010 22 34 “ Only quotes above
Special

Character

0100011 23 35 # Pound sign
Special

Character

0100100 24 36 $ Dollar sign
Special

Character

0100101 25 37 % Percentage sign
Special

Character

0100110 26 38 & Commercial and
Special

Character

0100111 27 39 ‘ Apostrophe
Special

Character

14

Binary
Hexadec

imal
Decimal

ASCII

Symbol
Description Group

0101000 28 40 (Left bracket
Special

Character

0101001 29 41) Right bracket
Special

Character

0101010 2A 42 * Asterisk
Special

Character

0101011 2B 43 + Plus symbol
Special

Character

0101100 2C 44 , Comma
Special

Character

0101101 2D 45 - Dash
Special

Character

0101110 2E 46 . Full stop
Special

Character

0101111 2F 47 / Forward slash
Special

Character

0110000 30 48 0

Numbers

0110001 31 49 1

Numbers

0110010 32 50 2

Numbers

0110011 33 51 3

Numbers

0110100 34 52 4

Numbers

0110101 35 53 5

Numbers

0110110 36 54 6

Numbers

0110111 37 55 7

Numbers

0111000 38 56 8

Numbers

0111001 39 57 9

Numbers

0111010 3A 58 : Colon
Special

characters

0111011 3B 59 ; Semicolon
Special

characters

0111100 3C 60 < Small than bracket
Special

characters

0111101 3D 61 = Equals sign
Special

characters

0111110 3E 62 > Bigger than symbol
Special

characters

0111111 3F 63 ? Question mark
Special

characters

1000000 40 64 @ At symbol
Special

characters

1000001 41 65 A

Capital

letters

15

Binary
Hexadec

imal
Decimal

ASCII

Symbol
Description Group

1000010 42 66 B

Capital

letters

1000011 43 67 C

Capital

letters

1000100 44 68 D

Capital

letters

1000101 45 69 E

Capital

letters

1000110 46 70 F

Capital

letters

1000111 47 71 G

Capital

letters

1001000 48 72 H

Capital

letters

1001001 49 73 I

Capital

letters

1001010 4A 74 J

Capital

letters

1001011 4B 75 K

Capital

letters

1001100 4C 76 L

Capital

letters

1001101 4D 77 M

Capital

letters

1001110 4E 78 N

Capital

letters

1001111 4F 79 O

Capital

letters

1010000 50 80 P

Capital

letters

1010001 51 81 Q

Capital

letters

1010010 52 82 R

Capital

letters

1010011 53 83 S

Capital

letters

1010100 54 84 T

Capital

letters

1010101 55 85 U

Capital

letters

1010110 56 86 V

Capital

letters

1010111 57 87 W
Capital

letters

16

Binary
Hexa

decimal
Decimal

ASCII

Symbol
Description Group

1011000 58 88 X

Capital

letters

1011001 59 89 Y

Capital

letters

1011010 5A 90 Z

Capital

letters

1011011 5B 91 [Left square bracket
Special

character

1011100 5C 92 \ Inverse/backward slash
Special

character

1011101 5D 93] Right square bracket
Special

character

1011110 5E 94 ^ Circumflex
Special

character

1011111 5F 95 _ Underscore
Special

character

1100000 60 96 ` Gravis (backtick)
Special

character

1100001 61 97 a

Lowercase

letters

1100010 62 98 b

Lowercase

letters

1100011 63 99 c

Lowercase

letters

1100100 64 100 d

Lowercase

letters

1100101 65 101 e

Lowercase

letters

1100110 66 102 f

Lowercase

letters

1100111 67 103 g

Lowercase

letters

1101000 68 104 h

Lowercase

letters

1101001 69 105 i

Lowercase

letters

1101010 6A 106 j

Lowercase

letters

1101011 6B 107 k

Lowercase

letters

1101100 6C 108 l

Lowercase

letters

1101101 6D 109 m

Lowercase

letters

17

Binary
Hexa

decimal
Decimal

ASCII

Symbol
Description Group

1101110 6E 110 n

Lowercase

letters

1101111 6F 111 o

Lowercase

letters

1110000 70 112 p

Lowercase

letters

1110001 71 113 q

Lowercase

letters

1110010 72 114 r

Lowercase

letters

1110011 73 115 s

Lowercase

letters

1110100 74 116 t

Lowercase

letters

1110101 75 117 u

Lowercase

letters

1110110 76 118 v

Lowercase

letters

1110111 77 119 w

Lowercase

letters

1111000 78 120 x

Lowercase

letters

1111001 79 121 y

Lowercase

letters

1111010 7A 122 z

Lowercase

letters

1111011 7B 123 { Left curly bracket
Special

characters

1111100 7C 124 l Vertical line
Special

characters

1111101 7D 125 } Right curly brackets
Special

characters

1111110 7E 126 ~ Tilde
Special

characters

1111111 7F 127 DEL

The DEL (Delete) symbol deletes a

character. This is a control character

that consists of the same number in all

positions.

Control

characters

18

Example 1: (10010101100001111011011000011010100111000011011111101001 1101110 11101

 001000000011000101100100110011)2

Step 1: In the first step, we we make the groups of 7-bits because the ASCII code is 7 bit.

1001010 1100001 1110110 1100001 1010100 1110000 1101111 1101001 1101110 1110100 1000000

0110001 0110010 0110011

Step 2: Then, we find the equivalent decimal number of the binary digits either from the ASCII table

or 64 32 16 8 4 2 1 scheme.

BINARY DECIMAL

64 32 16 8 4 2 1
 1 0 0 1 0 1 0

64+8+2=74

64 32 16 8 4 2 1
 1 1 0 0 0 0 1

64+32+1=94

64 32 16 8 4 2 1
 1 1 1 0 1 1 0

64+32+16+4+2=118

64 32 16 8 4 2 1
 1 1 0 0 0 0 1

64+32+1=97

64 32 16 8 4 2 1
 1 0 1 0 1 0 0

64+16+4=84

64 32 16 8 4 2 1
 1 1 1 0 0 0 0

64+32+16=112

64 32 16 8 4 2 1
 1 1 0 1 1 1 1

64+32+8+4+2+1=111

64 32 16 8 4 2 1
 1 1 0 1 0 0 1

64+32+8+1=105

64 32 16 8 4 2 1
 1 1 0 1 1 1 0

64+32+8+4+2=110

64 32 16 8 4 2 1
 1 1 1 0 1 0 0

64+32+16+4=116

64 32 16 8 4 2 1
 1 0 0 0 0 0 0

64

64 32 16 8 4 2 1
 0 1 1 0 0 0 1

32+16+1=49

64 32 16 8 4 2 1
 0 1 1 0 0 1 0

32+16+2=50

64 32 16 8 4 2 1
 0 1 1 0 0 1 1

32+16+2+1=51

19

Step 3: Last, we find the equivalent symbol of the decimal number from the ASCII table.

S.NO. DECIMAL SYMBOL S.NO. DECIMAL SYMBOL

1 74 J 8 105 i

2 94 a 9 110 n

3 118 v 10 116 t

4 97 a 11 64 @

5 84 T 12 49 1

6 112 p 13 50 2

7 111 o 14 51 3

20

Logic Gates:

Logic Gates may be defined as

Logic gates are the digital circuits capable of performing a particular logic function

by operating on a number of binary inputs.

 OR

Logic gates are the basic building blocks of any digital circuit.

Types Of Logic Gates:

Logic gates can be broadly classified as

21

1. BASIC LOGIC GATES:

1. AND Gate

 The output of AND gate is high (‘1’) if all of its inputs are high (‘1’).

 The output of AND gate is low (‘0’) if any one of its inputs is low (‘0’).

Logic Symbol

The logic symbol for AND Gate is as shown below

Truth Table

The truth table for AND Gate is as shown below

A B Y = A.B

0 0 0

0 1 0

1 0 0

1 1 1

22

2. OR Gate

 The output of OR gate is high (‘1’) if any one of its inputs is high (‘1’).

 The output of OR gate is low (‘0’) if all of its inputs are low (‘0’).

Logic Symbol

The logic symbol for OR Gate is as shown below

Truth Table

The truth table for OR Gate is as shown below

A B Y = A + B

0 0 0

0 1 1

1 0 1

1 1 1

23

3. NOT Gate

 The output of NOT gate is high (‘1’) if its input is low (‘0’).

 The output of NOT gate is low (‘0’) if its input is high (‘1’).

From here

 It is clear that NOT gate simply inverts the given input.

 Since NOT gate simply inverts the given input, therefore it is also known as Inverter Gate.

Logic Symbol

The logic symbol for NOT Gate is as shown below

Truth Table

The truth table for NOT Gate is as shown below

A Y = A’

0 1

1 0

24

2. UNIVERSAL LOGIC GATES:

Universal logic gates are the logic gates that are capable of implementing

any Boolean function without requiring any other type of gate.

They are called as “Universal Gates” because-

 They can realize all the binary operations.

 All the basic logic gates can be derived from them.

They have the following properties-

 Universal gates are not associative in nature.

 Universal gates are commutative in nature.

There are following two universal logic gates-

1. NAND Gate

2. NOR Gate

25

1. NAND Gate

 A NAND Gate is constructed by connecting a NOT Gate at the output terminal of the AND

Gate.

 The output of NAND gate is high (‘1’) if at least one of its inputs is low (‘0’).

 The output of NAND gate is low (‘0’) if all of its inputs are high (‘1’).

Logic Symbol

The logic symbol for NAND Gate is as shown below-

Truth Table

The truth table for NAND Gate is as shown below

A B Y = (A.B)’ OR Y = (A.B)

0 0 1

0 1 1

1 0 1

1 1 0

26

2. NOR Gate

 A NOR Gate is constructed by connecting a NOT Gate at the output terminal of the OR Gate.

 The output of OR gate is high (‘1’) if all of its inputs are low (‘0’).

 The output of OR gate is low (‘0’) if any of its inputs is high (‘1’).

Logic Symbol

The logic symbol for NOR Gate is as shown below

Truth Table

The truth table for NOR Gate is as shown below

A B Y = (A+B)’ OR Y = (A+B)

0 0 1

0 1 0

1 0 0

1 1 0

27

3. OTHER LOGIC GATES:

1. XOR Gate

The Exclusive-OR or ‘Ex-OR’ gate is a digital logic gate with more than two inputs and

gives only one output.

 The output of XOR Gate is ‘High’ if either input is ‘High’.

 The output is ‘Low’ if both the inputs are ‘High’ or if both the inputs are ‘Low’.

The symbol and truth table of the XOR gate can be shown as:

Logical Symbol of XOR Gate

An XOR gate is logically represented as,

Symbol Truth Table

2-input Ex-OR Gate

A B Y

0 0 0

1 0 1

0 1 1

1 1 0

Boolean Expression Y = A ⊕ B A OR B but NOT BOTH gives Y

28

2. XNOR Gate

The Exclusive-NOR or ‘EX-NOR’ gate is a digital logic gate with more than two inputs

and gives only one output.

 The output of XNOR Gate is ‘High’ if both the inputs are ‘High’ or if both the

inputs are ‘Low.’

 The output is ‘Low’ if either of the input is ‘Low’.

The symbol and truth table of an XNOR gate can be given a s:

Logical Symbol of XNOR Gate

An XNOR gate is logically represented as

Symbol Truth Table

2-input Ex-NOR Gate

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

Boolean Expression Y = A ⊕ B If A AND B the SAME gives Y

29

REALIZATION OF LOGIC FUNCTIONS WITH THE HELP OF UNIVERSAL GATES-

NAND GATE

 NAND gate is actually a combination of two logic gates: AND gate followed by NOT gate.

 So its output is complement of the output of an AND gate.

 This gate can have minimum two inputs, output is always one. By using only NAND gates,

we can realize all logic functions: AND, OR, NOT, X-OR, X-NOR, NOR. So this gate is also

called universal gate.

1. NAND gates as NOT gate:

A NOT produces complement of the input. It can have only one input, tie the inputs of a NAND

gate together. Now it will work as a NOT gate. Its output is

Y = (A.A)’

=> Y = (A)’

2. NAND gates as AND gate

A NAND produces complement of AND gate. So, if the output of a NAND gate is inverted, overall

output will be that of an AND gate.

Y = ((A.B)’)’

=> Y = (A.B)

30

3. NAND gates as OR gate

From DeMorgan’s theorems: (A.B)’ = A’ + B’

=> (A’.B’)’ = A’’ + B’’ = A + B

So, give the inverted inputs to a NAND gate, obtain OR operation at output.

4. NAND gates as NOR gate

 A NOR gate is an OR gate followed by NOT gate.

 So connect the output of OR gate to a NOT gate, overall output is that of a NOR gate.

Y = (A + B)’

31

5. NAND gates as X-OR gate

 The output of a two input X-OR gate is shown by: Y = A’B + AB’.

 This can be achieved with the logic diagram shown in the left side.

Gate No. Inputs Output

1 A, B (AB)’

2 A, (AB)’ (A (AB)’)’

3 (AB)’, B (B (AB)’)’

4 (A (AB)’)’, (B (AB)’)’ A’B + AB’

Now the ouput from gate no. 4 is the overall output of the configuration.

Y = ((A (AB)’)’ (B (AB)’)’)’

= (A(AB)’)’’ + (B(AB)’)’’

= (A(AB)’) + (B(AB)’)

= (A(A’ + B)’) + (B(A’ + B’))

= (AA’ + AB’) + (BA’ + BB’)

= (0 + AB’ + BA’ + 0)

= AB’ + BA’

=> Y = AB’ + A’B

32

6. NAND gates as X-NOR gate

 X-NOR gate is actually X-OR gate followed by NOT gate.

 So give the output of X-OR gate to a NOT gate, overall output is that of an X-NOR gate.

Y = AB+ A’B’

33

REALIZATION OF LOGIC FUNCTIONS WITH THE HELP OF UNIVERSAL GATES-

NOR GATE

1. NOR gates as NOT gate

 A NOT produces complement of the input.

 It can have only one input, tie the inputs of a NOR gate together.

 Now it will work as a NOT gate. Its output is

Y = (A+A)’

=> Y = (A)’

2. NOR gates as OR gate

 A NOR produces complement of OR gate.

 So, if the output of a NOR gate is inverted.

 Overall output will be that of an OR gate.

Y = ((A+B)’)’

=> Y = (A+B)

34

3. NOR gates as AND gate

From DeMorgan’s theorems: (A+B)’ = A’B’

=> (A’+B’)’ = A’’B’’ = AB

So, give the inverted inputs to a NOR gate, obtain AND operation at output.

4. NOR gates as NAND gate

 A NAND gate is an AND gate followed by NOT gate.

 So connect the output of AND gate to a NOT gate.

 Overall output is that of a NAND gate.

Y = (AB)’

35

5.NOR gates as X-OR gate

 X-OR gate is actually X-NOR gate followed by NOT gate.

 So give the output of X-NOR gate to a NOT gate.

 Overall output is that of an X-OR gate.

Y = A’B+ AB’

36

6. NOR gates as X-NOR gate

The output of a two input X-NOR gate is shown by: Y = AB + A’B’.

This can be achieved with the logic diagram shown in the left side.

Gate No. Inputs Output

1 A, B (A + B)’

2 A, (A + B)’ (A + (A+B)’)’

3 (A + B)’, B (B + (A+B)’)’

4 (A + (A + B)’)’, (B + (A+B)’)’ AB + A’B’

Now the output from gate no. 4is the overall output of the configuration.

 Y = ((A + (A+B)’)’ (B +(A+B)’)’)’

 = (A+(A+B)’)’’.(B+(A+B)’)’’

 = (A+(A+B)’).(B+(A+B)’)

 = (A+A’B’).(B+A’B’)

 = (A + A’).(A + B’).(B+A’)(B+B’)

 = 1.(A+B’).(B+A’).1

 = (A+B’).(B+A’)

 = A.(B + A’) +B’.(B+A’)

 = AB + AA’ +B’B+B’A’

 = AB + 0 + 0 + B’A’

 = AB + B’A’

=> Y = AB + A’B’

37

	CLASSIFICATION OF BINARY CODES
	Different Types of Binary Codes | BCD (8421), 2421, Excess-3, Gray
	BCD Code:
	EXCESS-3 CODE:
	THE GRAY CODE:
	BINARY-TO-GRAY CODE CONVERSION
	APPLICATION OF GRAY CODE:
	ADVANTAGES OF GRAY CODE:
	DISADVANTAGES OF GRAY CODE:
	2421 CODE:

	ERROR DETECTION CODE:
	1. PARITY CODE:
	 Even Parity Code
	 Odd Parity Code

	ASCII CODE
	1. CONTROL CHARACTERS
	2. SPECIAL CHARACTERS
	3. NUMBERS CHARACTERS
	4. LETTERS CHARACTERS
	ASCII Table
	Example 1: (10010101100001111011011000011010100111000011011111101001 1101110 11101
	001000000011000101100100110011)2

	Logic Gates:
	Types Of Logic Gates:
	1. BASIC LOGIC GATES:
	1. AND Gate
	Logic Symbol
	Truth Table

	2. OR Gate
	Logic Symbol
	Truth Table

	3. NOT Gate
	Logic Symbol
	Truth Table

	2. UNIVERSAL LOGIC GATES:
	1. NAND Gate
	Logic Symbol
	Truth Table

	2. NOR Gate
	Logic Symbol
	Truth Table
	3. OTHER LOGIC GATES:
	1. XOR Gate

	Logical Symbol of XOR Gate
	2. XNOR Gate

	Logical Symbol of XNOR Gate
	REALIZATION OF LOGIC FUNCTIONS WITH THE HELP OF UNIVERSAL GATES-
	NAND GATE
	1. NAND gates as NOT gate:
	2. NAND gates as AND gate
	3. NAND gates as OR gate
	4. NAND gates as NOR gate
	5. NAND gates as X-OR gate
	6. NAND gates as X-NOR gate
	REALIZATION OF LOGIC FUNCTIONS WITH THE HELP OF UNIVERSAL GATES- (1)
	Nor GATE
	1. NOR gates as NOT gate
	2. NOR gates as OR gate
	3. NOR gates as AND gate
	4. NOR gates as NAND gate
	5.NOR gates as X-OR gate
	6. NOR gates as X-NOR gate

